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Abstract

Background: Our work is focused on fuzzy keyword search over encrypted data in
Cloud Computing.

Methods: We adapt results on private identification schemes by Bringer et al. to this
new context. We here exploit a classical embedding of the edit distance into the
Hamming distance.

Results: Our way of doing enables some flexibility on the tolerated edit distance
when looking for close keywords while preserving the confidentiality of the queries.

Conclusion: Our proposal is proved secure in a security model taking into account
privacy.

Keywords: Edit distance, Embeddings for edit distance, Private Identification
schemes

Introduction
Cloud Computing enables users to have access to shared resources somewhere on the

Internet. At least, some storage capacities can easily be envisaged. This brings many

sensitive information in the Cloud where they should stay, to preserve their confidenti-

ality, encrypted. To look at their content remotely (and without decrypting them),

some specific procedures have been developed. Searchable encryption [1] builds up an

index for each keyword of interest. This way, a user can search over his encrypted data

for such a keyword and retrieve the files containing it. Note that this search should be

made with great care, for privacy reasons, in order for the Cloud to not be able to find

out what is the underlying keyword. Symmetric Searchable Encryption (SSE) as intro-

duced by [2] relies on symmetric encryption primitives for efficiency reasons. In [3],

Li et al. build on SSE for a solution for fuzzy keyword search over encrypted data in

Cloud Computing. The fuzziness should here be understood as minor typos introduced

by users when entering the request through their keyboard. In this context, the edit

distance (Levenshtein distance) is relevant to measure the strings similarity.

Related works

Considers two different techniques: wildcard-based and gram-based techniques [3], for

achieving fuzzy keyword search over encrypted data. These two methods build a set

consisting of the searched keyword and the nearby words according to the used techni-

que. For instance, for the keyword CASTLE, the fuzzy keyword set for wildcard-based
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technique consists of {CASTLE, *CASTLE, *ASTLE, C*ASTLE, C*STLE, ..., CASTL*E,

CASTL*, CASTLE*} (respectively {CASTLE, CSTLE, CATLE, CASLE, CASTE, CASTL,

ASTLE} for the gram-based technique) for an edit distance of 1. The idea behind these

fuzzy keyword sets is to index - before the search phase - the exact keywords but also

the ones differing slightly according to a fixed bound on the tolerated edit distance.

Our approach is somewhat different. For iriscode biometric data, the comparison of

two iriscodes is made thanks to the computation of an Hamming distance [4]. There is

today a trend to generalize this way of performing biometric matching for other mod-

alities [5,6] for easier embedding into cryptographic protocols. In their works on pri-

vate identification, Bringer et al. [7-9] (see also Section Private identification

schemes) actually show how to carry out fuzzy keyword search for the Hamming dis-

tance. Following this trend, our idea is to combine this with a classical embedding of

edit distance into the Hamming distance [10,11] (see Section Edit distance approxi-

mation) to obtain a fuzzy keyword search for the edit distance. This way of doing has

at least two advantages. Firstly, contrary to [3] our way of proceeding does not need to

a priori define the set of words which are considered as acceptable for the search.

Moreover, we inherit of the security properties of [7] in their security model. Note that

our proposal thus relies on an asymmetric security model. This can be seen as an asset

for Cloud Computing applications. Indeed, using public-key encryption seems relevant

in this context. To the best of our knowledge, this is the first scheme enabling fuzzy

search with respect to edit distance over data encrypted with a public-key scheme.

Contribution and organization

The main contribution of this work is the proposal for a fuzzy keyword search over

encrypted data where fuzzy means that we tolerate some edit distance deviation. A

natural application of our results is Cloud Computing. We give proofs for the security

properties of our scheme. We also discuss briefly and give some elements about its

performances.

In the next Section, we briefly describe classical cryptographic primitives that we use.

In Section Model presentation, we present our security model. In Section Useful

technical tools, we recall some already published works on private identification

schemes and the embedding of edit distances into the Hamming distance. In Section

Our construction, we introduce our work and explain its properties.

Cryptographic primitives

Private information retrieval protocol

A Private Information Retrieval protocol (PIR, [12]) is a scheme that enables to retrieve

a specific information from a remote server in such a way that the latter does not learn

information about the query.

Suppose a database is constituted with M bits × = x1,...,xM. To be secure, the proto-

col should satisfy the following properties [13]:

• Soundness: When the user and the database follow the protocol, the result of the

request is exactly the requested bit.

• User Privacy: For all × Î {0,1}M, for 1≤ i,j ≤ M, for any algorithm used by the

database, it cannot distinguish with a non-negligible probability the difference between

the requests of index i and j.
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Among the known constructions of computational secure PIR, block-based PIR - i.e.

working on block of bits - allows to efficiently reduce the cost. The best performances

are from Gentry and Ramzan [14] and Lipmaa [15] with a communication complexity

polynomial in the logarithm of M. Surveys of the subject are available in [16,17].

Some PIR protocols are called Symmetric Private Information Retrieval, when they

comply with the Data Privacy requirement [13]. This condition states that the querier

cannot distinguish between a database that possesses only the information he

requested, and a regular one; in other words, that the querier does not get more infor-

mation than he asked for.

Private information storage protocol

PIR protocols enable to retrieve information of a database. A Private Information Sto-

rage (PIS) protocol [17] is a protocol that enables to write information in a database

with properties that are similar to that of PIR. The goal is to prevent the database

from knowing the content of the information that is being stored; for detailed descrip-

tion of such protocols, see [1,18].

To be secure, the protocol must also satisfy the Soundness and User Privacy proper-

ties, meaning that 1. following the protocol results in the update of the database with

the appropriate value, and 2. any algorithm run by the database cannot distinguish

between two writing requests.

Model presentation

In this section, we introduce the model of security for an Error-Tolerant Searchable

Encryption scheme for edit distance by adapting the model from [7].

Entities for the protocol

The context is Cloud Computing where users can either store or retrieve data from the

Cloud. This leads to three different entities:

• The Cloud CL which represents a single point of access to remote shared

resources (i.e. a remote storage system). The Cloud is assumed to be untrusted, so we

consider the content as publicly accessible to a third party and that communications in

the Cloud and with users can be eavesdropped.

• The sender X sends data to be stored on the Cloud CL .

• The receiver Y generates queries to the Cloud CL to obtain the results of his

searches.

Note that the sender and the receiver are not necessarily the same user and it is even

possible that several senders and several receivers exist and interact. This corresponds

well to the Cloud Computing model.

Definition of the primitives

In the sequel, messages are strings of length N, and ed(m1m2) denotes the edit distance

between m1,m2 Î{0,1}N, i.e. the minimum number of character insertions, deletions

and substitutions needed to transform one string into the other. Note that edit dis-

tance is well defined on larger alphabet and variable length strings. The scheme can be

extended to these cases.

To enable error-tolerant searchable encryption, we need three main primitives: the

key materials generation, the send request and the receive request.

Definition 1. A (�, lmin,lmax)-Public Key Error-Tolerant Searchable Encryption for

the edit distance is obtained with the following probabilistic polynomial-time methods:
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• KeyGen(1ℓ) initializes the system, and generates public and private keys (pk,sk) for

a security parameter ℓ. The public key pk is used to store data in the Cloud, and the

secret key sk is used to retrieve information.

• SendX ,CL(m, pk) is a protocol in which X sends to CL the data m Î {0,1}N to be

stored in the Cloud. At the end of the protocol, CL has stored the message m at a vir-

tual address noted �(m).

• Retrieve,CL(m′, sk) is a protocol in which, given a fresh message m’ Î {0,1}N, Y
asks for the virtual addresses of all data that are stored on CL and are close to m’,

with respect to the Completeness(lmin) and Soundness(lmax) criteria (cf. Section

Security requirements). This outputs a set of virtual addresses, noted F(m’), where Y
can reach the corresponding messages.

Completeness and Soundness criteria for the parameters lmin, lmax represent the fact

that a stored message will be actually retrieved if m’ is at an edit distance less than

lmin and that no message at a distance greater than lmax from m’ will be returned

(with a given non negligible probability). We emphasize that the definition above is

focused on the searching problem (which is the tough task here): the algorithms’ out-

puts are the virtual addresses where the retriever Y can retrieve the messages. The

messages are possibly stored encrypted via a second encryption scheme.

An important difference compared to [3] is that we do not rely on fuzzy keyword

sets, we want to ensure a given tolerance (materialized by lmin, lmax). By avoiding

wildcards and grams, we do not make any prior assumption on the location of the

errors.

Security requirements

We first recall the completeness and soundness criteria that formalized the condition

for the scheme and the Cloud to actually return the correct answer.

Condition 1. Completeness(lmin), Soundness(lmax) Let m1, ..., mp Î {0,1}N be p dif-

ferent binary strings, and let m’Î{0,1}N be another string. Assume that, after initializa-

tion of the system, all the messages mi have been stored in the Cloud CL with virtual

addresses �(xi), and that a user Y retrieved the set of virtual addresses F(m’) asso-

ciated to m’.

1. The scheme is said to be complete, up to a probability 1 - �1 if

Pr
m′

[∃i, ed(m′,mi) ≤ λmin&ϕ(mi) /∈ �(m′)] ≤ ε1

(i.e. that except with a small probability all close messages are retrieved during the

search through a Retrieve query).

2. The scheme is said to be sound, up to a probability 1 - �2 if

Pr
m′

[∃i, d(m′,mi) > λmax&ϕ(mi) ∈ �(m′)]

is bounded by �2 (i.e. that a false positive happens only with a small probability).

We now give the definition of the security properties that the scheme needs to fulfill

to ensure that the data stored in the Cloud are kept confidential and that privacy of

queries is ensured.

Condition 2. Sender Privacy The scheme is said to respect Sender Privacy if the

advantage of any server is negligible in the ExpSender PrivacyA experiment, described below.
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Here, A is a malicious opponent taking the place of CL , and C is a challenger at the

user side.

ExpSender PrivacyA∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1. (pk, sk) ← KeyGen(1�) (C)
2. {m2, . . . ,m�} ← A (A)
3. ϕ(mi) ← SendC,CL(mi, pk) (C)
4. {m0,m1} ← A (A)

5. ϕ(me) ← SendC,CL(me, pk)
e∈R{0, 1} (C)

6. Repeat steps (2, 3) SendC,CL(me, pk)
7. e′ ∈ {0, 1} ← A (A)

The advantage of the adversary is |Pr [e′ = e]
1
2

|.
This experiment corresponds to a first phase where the adversary receives Send

requests that he chose himself. Then A selects a pair (m0,m1) of messages and the

challenger C chooses randomly one of the two messages to be stored in the Cloud. At

the end, after a polynomial number of other Send requests, the adversary tries to guess

which one of m0 or m1 has been sent. When the advantage of the adversary is negligi-

ble, we can assume that the data stored in the Cloud remains private.

The next condition focuses on retrieve queries. We want to ensure that the Cloud

does not learn information on the retrieve queries, i.e. neither on the input message

m’, nor on the close retrieved messages.

Condition 3. Receiver Privacy The scheme is said to respect Receiver Privacy if the

advantage of the Cloud is negligible in the experiment ExpReceiver PrivacyA described

below. A denotes the malicious opponent taking the place of CL , and C the challen-

ger at the user side.

ExpSender PrivacyA∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1. (pk, sk) ← KeyGen(1�) (C)
2. {m1, . . . ,m�} ← A (A)
3. ϕ(mi), (i ∈ {1, . . . ,�}) ← SendC,CL(mi, pk) (C)
4. {m′

2, . . . ,m
′
p} ← A (A)

5. �(m′
j), (j ∈ {2, . . . , p}) ← RetrieveC,CL(m′

j, sk) (C)
6. (m′

0,m
′
1) ← A (A)

7. �(m′e) ← RetrieveC,CL(m′
e, sk)

e∈R{0, 1} (C)
8. Repeat steps (4, 5)
9. e′ ∈ {0, 1} ← A (A)

The advantage of the adversary is |Pr [e′ = e]
1
2

|.
This experiment begins with the adversary’s choice of messages to be stored in the

Cloud. Then A chooses a number of retrieve queries to be made by the challenger.

Following this, A selects a pair of challenges (m′
0,m

′
1) and one of them is randomly

selected by C as input to a Retrieve query. Note that A should not see the result of

the Retrieve queries. At the end of the experiment, A tries to guess which one it was.
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This condition captures the privacy of the receiver Y when generating Retrieve

queries: CL does not learn information on their content.

Useful technical tools

Private identification schemes

The principle of a private identification scheme is to manage nearest neighbor search

in the encrypted domain. The two main sub-problems are the Approximate Nearest

Neighbor (ANN) problem and Searchable Encryption

The Approximate Nearest Neighbor (ANN) problem is defined as follows: Let P be

a set of points in a metric space (E,dE). For an input x Î E and � ≥ 0, find a point px
Î P such that

dE(x, px) ≤ (1 + ε)min
p∈P

dE(x, p).

This is an approximation of the Nearest Neighbor problem as the exact case is hard

to solve in large dimension spaces. Several algorithms for the ANN problem have been

proposed [19] and the basic principle is to rely on sketching methods which output

shorter vectors with increased stability and which enable to simplify the search: P is

preprocessed with such sketching to end-up with a look-up table of short vectors on

which the search can be realized quickly through counting the number of the exact or

almost exact matches. Sketching needs there to guarantee that two close inputs would

give with a good probability the same short vector. Examples of sketching methods are

numerous for vector space (with Hamming distance or Euclidean distance) [20-23]; for

instance random projections on small subspace. In the private identification schemes

[7-9], the authors suggest to use a construction exploited in [24] for iris biometry. This

is adapted to binary vectors with Hamming distance comparison. The sketching func-

tions are restriction of n bits vectors over r ≪ n of their coordinates to obtain r bits

vectors:

Definition 2. Let F = (f1, . . . , fµ) be a family of function from {0,1}n to {0,1}r such

that for x Î {0,1}n, we have for all i Î {1,...,μ}, fi(x) = (xi1 , . . . , xir ). We say that F is a

sketching family for the Hamming distance from dimension n to dimension r.

With a sketching family where all functions are independent and if we assume that

the inputs are uniformly distributed, the probability to obtain the same output with

two distinct inputs can be estimated as follows.

∀ x, x′ ∈ {0, 1}n
⎧⎪⎨
⎪⎩
Prf∈F [f (x) = f (x′) | d(x, x′) < λ1] > (1 − λ1

n
)
r

Prf∈F [f (x) = f (x′) | d(x, x′) > λ2] < (1 − λ2

n
)
r

In our construction, we rely on this idea for Hamming distance approximation com-

bined with the embedding method from [10,11] of edit distance into the Hamming

space.

As far privacy and security are concerned, private identification schemes are based

on searchable encryption principle. The main goal of searchable encryption [2,25] is to

store messages into an encrypted database while still enabling to search the messages

related to some keywords. For instance this could correspond to a remote mailing ser-

vice where the user wants to retrieve his messages which contain a given keyword,
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without letting the server learn information on the content of his mails. [3] also uses

such technique but only in a symmetric context. Following [7]’s idea, we adapt an

asymmetric searchable encryption scheme for our construction (cf. Section Our

construction).

A general solution to design a searchable encryption scheme is to associate a mes-

sage to a set of keywords and to consider each keyword as a virtual address where the

receiver can recover a link toward the associated messages. To manage all these rela-

tions in an efficient way, we follow [1,26,27] by using Bloom filters. Bloom filter [28] is

a notion used in membership checking applications to reduce the memory cost of the

data storage. We use an extension of this notion called Bloom filters with storage. It

enables to store identifiers of elements in each array.

Definition 3. Bloom Filter with Storage, [1] Let S be a finite subset of a space E and

a set of identifiers associated to S . For a family of v (independent and random) hash

functions H = {h1, . . . , hv}, with each hi:E®{1,...,k}, a (v,k)-Bloom Filter with Storage

for indexation of S is H , together with the array (t1,...,tk), defined recursively as:

1. ∀iÎ{1,...,k}, ti¬∅,

2. ∀x ∈ S,∀j ∈ {1, . . . , v}, thj(x) ← thj(x) ∪ {Id(x)}where Id(x) is the identifier of x.

In other words, the array is empty at the beginning and for each elementx ∈ S , we

add the identifier Id(x) of x at the cells indexed by h1(x),...,hv(x). To recover the identi-

fiers associated to an element y, we compute T(y) =
⋂v

j=1 thj(y) . The following lemma

describes the accuracy of this storage method.

Lemma 1. [28] Let (H, t1, . . . , tk) be a (v,k)-Bloom filter with storage indexing S .

For x ∈ S , the following properties hold:

• Id(x) ∈ T(x) =
⋂ν

j=1 thj(x) , i.e. the identifier of x ∈ S is always retrieved,

• the probability Pr[tÎT(y) and t≠Id(y)] to obtain a false positive is(
1 − (

1 − ν
k

)|S|)ν

.

Edit distance approximation

Our construction is based on the embedding of edit distance into Hamming distance

designed in [10]. To solve problems such as those described in Section Private identi-

fication schemes, data are embedded into Hamming space and then we can apply

techniques dedicated to Hamming distance.

Definition 4. Let (E1, dE1 ) and (E2, dE2 ) be two metric spaces. An embedding

ψ : (E1, dE1 ) → (E2, dE2 ) has a distortion c if for all (x,y) Î E1,

c−1 × dE1 (x, y) ≤ dE2 (ψ(x),ψ(y)) ≤ c × dE1 (x, y)

[10] proves that {0,1}N with edit distance can be embedded into ℓ1 with small distor-

tion 2O(
√

log2 N log2 log2 N) and then shows from a previous work [20] how to end upeffi-

ciently into the Hamming space. More precisely:

Lemma 2. [10] There exists a probabilistic polynomial time algorithm π and con-

stants c1,c2 > 0 that, for every N Î N, for every 4-N ≫ δ > 0, and for all × Î {0,1}N,

computes π(x) ∈ �
c2(N2 log2(N/δ))
1

and such that for all (x,y) Î {0,1}N, with probability at

least 1 - δ,
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2−c1(
√

log2 N log2 log2 N)ed(x, y) ≤ L1(π(x),π(y)) ≤ 2c1(
√

log2 N log2 log2 N)ed(x, y)

where L1 denotes the distance L1.

The principle of the algorithm is to partition a string x into about

2(
√

log2 N log2 log2 N) substrings. From each substring xi, sets of all substrings (shingles)

when taking a window of a fixed size t are considered (i.e. all possible substrings of xi

formed by t subsequent coordinates). By considering the metric defined by the mini-

mum cost perfect matching algorithm between sets, [10] then explains how such sets

are embedded into ℓ1. Note that this technique introduces a lot of redundancy in the

substrings which are embedded and this increases the dimension by a factor at least

N2, but this is interesting for our construction as the distortion is very low and the

algorithm remains polynomial in N.

Based on [20], the authors then show that there exist 0 < a < b < c2 and an embed-

ding Ψ from {0,1}N with edit distance ed to {0, 1}c2(log2(1/δ)) with Hamming distance

HD that computes Ψ(x) = (x;t) for every t Î N and such that with probability at least

1 - \delta:

• If ed(x,y) ≤ t, then HD(ψ(x), ψ(y)) ≤ alog2(1/δ).

• If ed(x, y) ≥ 2c1(
√

log2 N log2 log2 N)t then HD(ψ(x), ψ(y)) ≥ blog2(1/δ).

Our construction

Technical description

Setup Let {0,1}N be equipped with the edit distance. Let Ψ be the embedding of ({0,1}
N,ed) into ({0, 1}c2(log2(1/δ)),HD) (cf. previous section). Let F = (f1, . . . , fμ) be a

sketching family for the Hamming distance from dimension c2(log2(1/δ)) to a dimen-

sion r. Let (H, t1, . . . , tk), with H = {h1, . . . , hv}, and hi:{1,...,μ}×{0,1}
row{1,...,k}, be a (v,

k)-Bloom Filter with Storage.

Let (Gen, Enc, Dec) be a semantically secure (IND-CPA, [29]) public key cryptosys-

tem, let QueryPIRDB be the retrieve query from a database DB of a Private Information

Retrieval protocol and let UpdatePISDB(val, i) be the write query into a database DB (that

adds val to the i-th field) of a Private Information Storage protocol.

A Private Information Retrieval (PIR) [16] protocol enables to retrieve a specific

block from a database without letting the database learn anything about the query and

the answer (i.e. neither the index of the block nor the value of the block). This is done

through a method QueryPIRDB (i), that allows a user to recover the element stored at

index i in DB by running the PIR protocol. A Private Information Storage (PIS) proto-

col [17] enables to write information in a database while preventing the database from

learning information on what is being stored (neither the value of the data, nor the

index of the location where the data is being stored). Such a protocol provides a

method UpdatePISDB(val, index) , which takes as input an element and a database index,

and puts the value val into the database entry index. See Section Cryptographic pri-

mitives for more details on these notions.

KeyGen(1ℓ)
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The function takes a security parameter ℓ as input and uses Gen to generate a public

and private key pair (pk,sk). It also initializes the Bloom filter array, (t1,...,tk¬(Ø,...,Ø)),

and provides it to the Cloud.

SendX ,CL(m, pk)

To send a message to the Cloud, a user X executes the following algorithm.

1. X sends Enc(m,pk) to CL which will give him back a virtual address �(m).

2. X computes the embedding Ψ(m) and for all i Î {1,...,μ}, fi∘ψ(m) and for all j Î
{1,...,v}, X asks to CL to update the Bloom filter array through queries

UpdatePISCL
(
Enc

(
ϕ(m), pk

)
, hj

(
i||fi ◦ ψ(m)

))

in order to add the identifier into the cell thj(i||fi◦ψ(m)).

For privacy concerns, X will also complete the Bloom filter array with random data

in order to get the same number l of elements for all cells t1,...,tk.

At the end of the algorithm, CL has stored the message m at a virtual address noted

�(m) and the Bloom filter structure has been filled of encrypted identifiers via indexa-

tion by several sketches that enable to search with approximate data.

RetrieveY ,CL(m′, sk)

To retrieve a message in the Cloud, a user Y proceeds as follows.

1. For all i Î {1,...,μ} and for all j Î {1,...,v}, Y computes ai,j = hj(i||fi∘ψ(m)).

2. Y executes QueryPIRCL(αi,j) to retrieve the content of the cells tαi,j from the Bloom

filters stored into CL .

3. Y decrypts the content of the cells with Dec(.,sk) and for i Î {1,...,μ}

• Y computes the intersection of all the decrypted version of the cells tαi,1 , . . . , tαi,ν .

• If �(m) is in this intersection, this means that Y most probably found a match

fi∘ψ(m) = fi∘ψ(m’)

4. Y counts the number of times an identifier is retrieved in such intersections

∩ν
j=1tαi,j (for i Î {1,...μ}).

5. Y selects all the identifier which are retrieved above some threshold τ. This leads

to the result �(m′) = {ϕ(mi1 ), . . . ,ϕ(miγ )} of the execution of Retrieve.

Note that as the queries are made through a PIR protocol, the Cloud can not learn

any information. The advantage of using Bloom filters here is to permit an efficient

look-up into the structure, as for classical Bloom filter (i.e. without any encryption)

compared to other hash tables techniques.

Security properties

In this section, we explain why this construction achieves the security requirements of

Section Security requirements.

Lemma 3. Completeness The scheme is complete up to a probability 1 - Î1 with

ε1 ≤ 1 − (1 − α

c2
)rτ
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Proof. (sketch of) For m,m’ such that ed(m,m’) ≤ lmin, Section Edit distance approxi-

mation implies that HD(ψ(m;lmin), ψ(m’;lmin) ≤ alog2(1/δ) with probability 1 - δ.

Hence

Pr[fi(ψ(m)) = fi(ψ(m′))] > (1 − α

c2
)r .

This leads to a probability lower than 1 − (1 − α
c2
)rτ to find less than τ times the

identifier of a close message; probability that can thus be made small, cf. the example

in Section Discussion.

More precisely, ε1 ≈ ∑τ−1
i=0

(
μ

i

)
(1 − (1 − α

c2
)r)μ−i(1 − α

c2
)ri.

Lemma 4. Soundness With λmax = 2c1(
√

log2 N log2 log2 N)λmin and provided that Bloom

filter functions from H behave like pseudo-random functions from {1,...,μ} × {0,1}r to

{1,...,k}, then the scheme is sound up to a probability 1 - �2, with:

ε2 ≈
(
(1 − β

c2
)
r

(1 − 1
kν

) +
1
kν

)τ

Proof. (sketch of) For m,m’ such that ed(m,m’) > lmax, then Section Edit distance

approximation implies that HD(ψ(m;lmin), ψ(m’;lmin) ≥ blog2(1/δ). Hence

Pr[fi(ψ(m)) = fi(ψ(m′))] < (1 − β

c2
)r .

The other cause for an error could come from v collisions in the Bloom filter hashes.

Lemma 5. Sender Privacy Assume that the PIS protocol achieves PIS User Privacy,

the scheme ensures Sender Privacy.

Proof. (sketch of) CL receives only encrypted messages and UpdatePIS queries that do

not enable to distinguish between the output of Send(m0, pk) and the output of Send

(m1, pk), after the execution of Send(m1, pk), i Î {2,...,Ω} as we assume that the under-

lying encryption scheme is semantically secure and that the PIS protocol achieves PIS

User Privacy.

Lemma 6. Receiver Privacy Assume that the PIR protocol ensures PIR User Privacy,

then the scheme ensures Receiver Privacy.

Proof. (sketch of) The Cloud CL receives and answers only to QueryPIR requests, that

by assumption do not leak information neither on their content nor on the outputs.

Discussion
To illustrate the error rates that one can expect, we give an example of choice of para-

meters. For instance, we choose a Bloom filter array of size k = 128 with v = 64 hash

functions. Then we can approximate �2 as (1 − β

c2
)rτ . We have

ε1 ≈ ∑τ−1
i=0

(
μ

i

)
(1 − (1 − α

c2
)r)μ−i(1 − α

c2
)ri where a < b. Assume that a = c2/4 and

b = c2/2 then with μ = 128 functions in the sketching family for the Hamming dis-

tance, r = 10 and τ = 3, we obtain �2 negligible and �1 ≈ 0.023. With these parameters,

we have μ × v = 213 for the number of queries during Send and Retrieve phases.
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Concerning the cost of PIR and PIS queries, the size of the Bloom filter array should

remain not too large, like k = 128 here, to be efficient.

Note that in practice, the choice of lmin depends on the number of errors between

two words that one wants to tolerate for fuzzy search. Our embedding is made such

that lmax is made close to lmin. The other parameters have then to be tuned to obtain

small or negligible error rates �1 and �2 (cf. Lemma 3 and Lemma 4). The purpose of

this paper is to introduce a new encrypted search with edit distance. At this point, our

contribution is mainly theoretical. To go further, one should consider a practical use

case over the cloud to be able to devise an efficient implementation.
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